4 votos

Las posibles preferencias de los inversores por encima de lo 2 primeros momentos de retorno de distribución?

¿Alguien puede explicar de forma intuitiva una justificación para posibles preferencias de los inversores por los momentos de retorno de distribución más allá de los dos primeros momentos (es decir, la media y la varianza). Por ejemplo, ¿por qué se suele argumentar que el positivo distribuciones sesgadas son los preferidos para los negativos? Está relacionado con el conocido concepto de aversión al riesgo?

8voto

Muhammed Refaat Puntos 97

Inversor de las preferencias de nivel superior momentos son probablemente los más fáciles de explicar por el comportamiento financiero. Los inversores tendencia a sobrevalorar fuera del tamaño de resultados positivos y negativos, tales como jugadores de la voluntad de jugar negativo de la esperanza de juegos de casino, es compatible con muchas de las intuiciones que subyacen Teoría de la Perspectiva. Hay varias posibles sesgos de comportamiento que subyacen a estas cogntitive errores. Por ejemplo, el efecto de recencia se cree que la causa de los inversores a sobreestimar la probabilidad de descomunales ganancias basa en el olvido de las pérdidas y / o centrarse más en otros recientes ganancias. Por lo tanto, se cree que los inversores estarían motivados más por la media de la mediana ("típica") resultado.

Preferencias para el nivel superior momentos se cree que funcionan de manera similar. Dado que el sesgo es positivo para una distribución donde la media supera la media, el sesgo de recencia predice que los valores positivos histórico y/o implícita asimetría son más propensos a tener menores beneficios en el futuro, ya que son también más propensos a ser plenamente precio. Esta intuición es ampliamente apoyada por la literatura sobre la sección transversal de la rentabilidad del activo.

Ang, Hodrick, Xing, y Zhang (2008) resumen este punto de vista:

Barberis y Huang (2005) desarrollan un comportamiento de ajuste en el que el individuales de la asimetría de la rentabilidad de las acciones puede tener un precio.8 Bajo el acumulativa de la perspectiva de la teoría de las preferencias de Tversky y Kahneman (1992), los inversores transformar probabilidades objetivas utilizando una función de ponderación que sobreponderaciones las colas de la distribución de probabilidad. Este causas positivamente sesgada de valores a ser caro y a ganar negativo promedio de los rendimientos en exceso.

Además, la sección transversal de la rentabilidad del capital tienden a ser positivamente sesgada. Dos estudios recientes demuestran que las acciones individuales' devuelve, en conjunto, no superan a las de los bonos. I. e., más de un índice de desempeño es atribuible a un par de valores atípicos. Motivados por estos valores atípicos, los inversores tienden para en conjunto buscar futuros grandes ganadores, lo que resulta en su relación sobre-valoración.

Bessembinder (2017) se encuentra:

Cuatro de cada siete acciones comunes que han aparecido en la CRSP la base de datos desde 1926, tienen toda la vida comprar y mantener devuelve menos de un mes en bonos del Tesoro. Cuando se expresa en términos de dólares de por vida la riqueza la creación, el de mejor desempeño en el cuatro por ciento de las empresas cotizadas explicar la ganancia neta para todo el mercado de valores de EE.UU. desde 1926, como otros las poblaciones colectivamente igualado letras del Tesoro. Estos resultados ponen de manifiesto el importante papel de positiva la asimetría en la distribución de individuales de la rentabilidad de las acciones, atribuible tanto a la asimetría en mensual las devoluciones y a los efectos de la capitalización. Los resultados ayudan a explicar por qué mal diversificación de estrategias activas mayoría de las veces tienen un rendimiento bajo el mercado de los promedios.

Heaton, Polson, Witte (2017) también encontrar:

...activa de los gestores de renta variable tiende a un desempeño deficiente de un índice de referencia. Nosotros motivar a nuestro modelo con la observación empírica de que la mejor la realización de acciones en un mercado amplio índice de frecuencia de realizar mucho mejor de otras poblaciones en el índice. Seleccionar al azar un subconjunto de valores del índice puede aumentar considerablemente la probabilidad de bajo rendimiento del índice. La probabilidad relativa de bajo rendimiento por inversionistas de la elección activa de gestión de la probabilidad es mucho más importante de la pérdida a los mismos inversionistas de las cuotas más altas de activo gestión de la relación pasivo índice de inversión. Por lo tanto, activa la gestión puede ser aún más difícil de lo que se creía, y las apuestas para encontrar los mejores managers activos puede ser mayor que se suponía.

Por lo tanto el deseo de sesgo positivo podría tener sentido en el contexto en que la equidad de los mercados fuera de rendimiento se debe principalmente a la sección transversal de la asimetría.

EDITAR

En futuras investigaciones, parece que los inversores' preferencias de asimetría positiva puede ayudar a explicar por qué se dio cuenta de sesgar está negativamente correlacionada con la rentabilidad del capital. Si los inversores tienen una preferencia para las poblaciones con sesgo positivo, entonces van a hacer subir los precios de las reservas, que a su vez se traduce en una baja de los rendimientos futuros.

En Amaya Vasquez (2015), los autores indican que:

La compra de acciones en el nivel más bajo se dio cuenta de la asimetría decil y venta de las existencias en el más alto se dio cuenta de la asimetría decil genera un promedio de devolución de 19 puntos base la siguiente semana con un t-estadístico de 3.70. Este resultado es robusto a través de una amplia variedad de implementaciones y no es capturado por la Fama-francés y factores de Carhart. El relación entre di cuenta de la curtosis y la próxima semana׳s la rentabilidad de las acciones es positivo, pero no siempre es significativo. No encontramos una fuerte relación entre di cuenta de la volatilidad y la próxima semana׳s la rentabilidad de las acciones.

Por otra parte, que las poblaciones con mayor di cuenta de la asimetría de rentabilidad tienden a ser más caros también podría ayudar a explicar su sensibilidad a los ingresos de los choques.

El hallazgo de una correlación positiva entre di cuenta de la volatilidad de avance y de la rentabilidad del capital es objeto de controversia en la literatura. Una relación positiva puede ser visto como un artefacto de inversores con aversión al riesgo percibido, por que se dio cuenta de la variación de la frecuencia es un proxy. Sin embargo, hay muchos otros hallazgos que contradicen este... es decir, una clase de fenómenos a menudo llamado "apostando contra la beta". Donde se hacen constantemente de acuerdo es en la relación positiva entre la rentabilidad del capital y la normalizado diferencias entre la IV y RV.

1voto

steveo'america Puntos 340

El argumento que he visto para mayores momentos de orden de la siguiente manera a partir de una expansión de registro de la riqueza: \begin{align} log(W) &= log(W_0 (1+r))\\ &= log(W_0) + log(1 + E[r] + r - E[r])\\ &= log(W_0) + log(1 + E[r]) + log\left(1 + \frac{r - E[r]}{1 + E[r]}\derecho), \end{align} donde $W_0$ es la inicial de la riqueza y $r$ son simples devuelve. A continuación, aplicar una expansión en series de Taylor para el último registro para obtener \begin{align} log(W) &= log(W_0) + log(1 + E[r]) + \frac{r - E[r]}{1 + E[r]} -\frac{1}{2}\left(\frac{r - E[r]}{1 + E[r]}\derecho)^2 +\frac{1}{3}\left(\frac{r - E[r]}{1 + E[r]}\derecho)^3 \ldots, \end{align} Ahora tome las expectativas: \begin{align} E\left[log(W)\right] &= log(W_0) + log(1 + E[r]) -\frac{1}{2}\frac{E\left[\left(r - E[r]\derecho)^2\derecho]}{\left(1 + E[r]\derecho)^2} +\frac{1}{3}\frac{E\left[\left(r - E[r]\derecho)^3\derecho]}{\left(1 + E[r]\derecho)^3} \ldots, \end{align} Por lo tanto un inversionista maximización de espera del registro de la riqueza debe tener un positivo preferencia por los más grandes momentos de orden impar y menor incluso momentos de orden.

Hay una línea de razonamiento basado en la maximización de la probabilidad de un triunfo que se basa en el de Roy criterio. Aquí el inversionista desea maximizar $$ \operatorname{Pr}\left(W > W_0(1+r_1)\derecho), $$ para algunos de retorno fijo con valor de $r_1$. La matemática es un poco más complicada, pero uno de los resultados es que la preferencia por orden superior momentos puede tener signos mixtos. Por ejemplo, dependiendo de la razón de Sharpe para la devuelve, un inversor puede tener preferencia por mayor sesgo o menor sesgo en los rendimientos. Un inversionista con una visión a corto plazo que necesita para borrar de un cierto umbral (como su gestor de inversiones) va a vender billetes de lotería para perseguir a los pequeños devuelve, arriesgando la posibilidad de un gran premio; el inversionista con visión de largo plazo iba a comprar boletos de la lotería y el sacrificio de su costo.

0voto

Ken Puntos 103

Creo que tu suposición de "por qué a menudo se argumenta que el positivo distribuciones sesgadas son los preferidos para los negativos? Está relacionado con el conocido concepto de aversión al riesgo?" es incorrecta o, al menos parcialmente equivocada.

Para la mayoría de los tipos de instrumentos financieros, tales como la mayoría de los índices y acciones, que muestran una asimetría negativa en su regreso a las distribuciones. Eso es exactamente las características de estos instrumentos, como los datos históricos muestran riesgo a la baja son menos frecuentes, pero más graves, o la gente siempre llamada "fat tails". Sin embargo, los lotes de los productos básicos muestran una asimetría positiva, especialmente aquellos con alta elasticidad en la curva de la oferta, tales como granos, ganado, energía, etcétera.

De las declaraciones prospectivas, perspectiva, la asimetría también se demostró en la opción de mundo, es por eso que pone son generalmente mucho más caros que las llamadas con el mismo nivel de deltas(aquí el uso de las existencias como ejemplos de nuevo). Sin embargo, la cola implícita de mercado de opción en realidad es incluso más gordo que el histórico de rendimientos reales, que es provocado por la aversión al riesgo como muchos de los participantes en el mercado están dispuestos a pagar más en pone de protección, que también se puede entender como la demanda.

Para la cuestión de momentos, yo diría dos momentos no así la dirección de la característica real de los rendimientos de las distribuciones de instrumentos financieros. La utilización de existencias como ejemplos una vez más, suelen mostrar más altos de la curtosis y algunas otras características. Así que si usted ajuste a devolver los datos a una distribución normal, el ajuste va a ser muy feo. Me gustaría presentarles a una distribución llamada meixner de distribución, que es un 4-distribución de parámetros ajusta a los datos de retorno el mejor, como lo que yo sé. https://www.eurandom.tue.nl/reports/2002/004-report.pdf

Finanhelp.com

FinanHelp es una comunidad para personas con conocimientos de economía y finanzas, o quiere aprender. Puedes hacer tus propias preguntas o resolver las de los demás.

Powered by:

X