1 votos

¿Cómo calcular los parámetros de media y volatilidad para el movimiento browniano geométrico?

Digamos que tengo una serie temporal $S_K$ para los precios mensuales de activos de los últimos 30 años. Quiero ejecutar una simulación de montecarlo utilizando el movimiento browniano geométrico

$$S_t = S_0\exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right)$$

En mi simulación de montecarlo, planeo utilizar un incremento de tiempo $dt=\frac{1}{12}$ para simular incrementos de 1 mes.

¿Cuál es la media $\mu$ y la volatilidad $\sigma$ que se deben usar en el cálculo? Intuitivamente, parece incorrecto usar la media y la desviación estándar a largo plazo (30 años) ya que la simulación tendrá pasos de tiempo de 1 mes, así que no estoy seguro de qué valores usar.

3voto

Matt Puntos 51

Si quieres basarte en los valores históricos en absoluto (en lugar de una curva de futuros y volatilidades implícitas), entonces $\mu$ sería la tasa de crecimiento exponencial anualizada medida durante un período T, calculada como $\mu=\frac{ln(S_{T}/S_{0})}{T}$ (donde T se mide en años), y $\sigma$ sería la volatilidad anualizada, determinada como la varianza de los log-retornos durante un período de N días, anualizados con un factor de $\sqrt{N_{trade}/N}$, donde $N_{trade}$ es el número de días de trading por año (frecuentemente tomado como 252):

$\sigma=\frac{\sqrt{N_{trade}/N}}{\sqrt{n-1}}\sqrt{\sum_{i=1}^{n}ln^{2}(\frac{S_{i+N}}{S_{i}})}$

Tal vez valga la pena mencionar la razón de la omisión del promedio $\mu$ de los retornos logarítmicos en la fórmula anterior - $\mu$ suele ser mucho más pequeño que la desviación estándar $\sigma$ de los retornos logarítmicos. Utilizando estas fórmulas, no tienes que preocuparte por la longitud del intervalo de observación, siempre y cuando establezcas correctamente $T$ y $N$.

0 votos

Gracias por la explicación. ¿Qué es $n$ en el término de volatilidad?

0 votos

Solo el número de observaciones de rendimiento de registro

Finanhelp.com

FinanHelp es una comunidad para personas con conocimientos de economía y finanzas, o quiere aprender. Puedes hacer tus propias preguntas o resolver las de los demás.

Powered by:

X