Examinemos lo que ocurre cuando fijamos el precio de nuestro pan de cada día, el swap de tipos de interés vainilla, en dos mundos: el de la curva única y el de la curva múltiple.
Que la primera fecha de reajuste sea $T_\alpha$ y la última fecha de pago sea $T_\beta$ .
En el mundo de la curva única, el IRS vainilla tiene PV en el tiempo $t$ para ser $$ \begin{align} \pi_t & = \mathbb{E}^{ \mathbb{Q} }_{t} \left[ \sum_{i} D_{tT_i} \tau_i \left[ L(T_{i-1};T_{i-1},T_i) - K \right] \right] \\ & = \sum_{i} P_{tT_i} \tau_i \left[ \mathbb{E}^{ \mathbb{Q}^{T_i} }_{t} \left[ L(T_{i-1};T_{i-1},T_i) \right] - K \right] \\ & = \sum_{i} P_{tT_i} \tau_i \left[ L(t;T_{i-1},T_i) - K \right] \\ & = \sum_{i} P_{tT_i} \tau_i L(t;T_{i-1},T_i) - K \sum_{i} P_{tT_i} \tau_i \\ & = \sum_{i} P_{tT_i} \tau_i \frac{1}{\tau_i} \left[ \frac{P_{tT_{i-1}} }{P_{tT_i}} -1 \right] - K \sum_{i} P_{tT_i} \tau_i \\ & = \sum_{i} P_{tT_i} \left[ \frac{P_{tT_{i-1}} }{P_{tT_i}} -1 \right] - K \sum_{i} P_{tT_i} \tau_i \\ & = P_{tT_\alpha} - P_{tT_\beta}-K \sum_{i} P_{tT_i} \tau_i \end{align} $$
En el mundo de las curvas múltiples, el IRS vainilla tiene PV en el tiempo $t$ para ser
$$ \begin{align} \pi_t & = \mathbb{E}^{ \mathbb{Q} }_{t} \left[ \sum_{i} D^{\text{ois}}_{tT_i} \tau^{\text{ois}}_i \left[ L(T_{i-1};T_{i-1},T_i) - K \right] \right] \\ & = \sum_{i} P^{\text{ois}}_{tT_i} \tau^{\text{ois}}_i \left[ \mathbb{E}^{ \mathbb{Q}^{T_i} }_{t} \left[ L(T_{i-1};T_{i-1},T_i) \right] - K \right] \\ & = \sum_{i} P^{\text{ois}}_{tT_i} \tau^{\text{ois}}_i \left[ L(t;T_{i-1},T_i) - K \right] \\ & = \sum_{i} P^{\text{ois}}_{tT_i} \tau^{\text{ois}}_i L(t;T_{i-1},T_i) - K \sum_{i} P^{\text{ois}}_{tT_i} \tau^{\text{ois}}_i \\ & = \sum_{i} P^{\text{ois}}_{tT_i} \tau^{\text{ois}}_i \frac{1}{\tau_i} \left[ \frac{P_{tT_{i-1}} }{P_{tT_i}} -1 \right] - K \sum_{i} P^{\text{ois}}_{tT_i} \tau^{\text{ois}}_i \\ \end{align} $$ Configuración $\pi_t=0$ es decir, entrar en el swap en el momento $t$ no tiene ningún coste, significa que el tipo de cambio es $$ K=\frac{\sum_{i} P^{\text{ois}}_{tT_i} \tau^{\text{ois}}_i \frac{1}{\tau_i} \left[ \frac{P_{tT_{i-1}} }{P_{tT_i}} -1 \right] }{\sum_{i} P^{\text{ois}}_{tT_i} \tau^{\text{ois}}_i} $$
La diferencia es que ahora se requieren ambas curvas ZCB para valorar el swap. La medida de riesgo neutral $\mathbb{Q}$ está ahora explícitamente bajo la curva de descuento. Se sigue asumiendo que la curva de proyección es una martingala bajo $\mathbb{Q}$ Sin embargo.