2 votos

¿Cómo encontrar la media y la varianza de este proceso estocástico?

$ I_t de la int_0 de los W_s de los archivos de la unidad de la W_s $ donde %-%-% es el movimiento browniano estándar y %-%-% es el número complejo. Cualquier ayuda será apreciada!

1voto

Pandaaaaaaa Puntos 387

Este proceso es martingala y tenemos

$$ E[I_t-t-0]-0 $$

Para encontrar la varianza, vamos a escribirla en forma diferencial $$ dI_t é-iW_t-dW_t $$ Aplicar la isometría de Ito $$ Var(I_t)-int_0-tE[e-2iW_s]ds $$ Aplicar MGF de normal $$ Var(I_t)-int_0-te-frac{1}{2}(2i)-2s-ds-int_0-te-2s-ds-frac-1-e-2t-{2} $$ Por favor, hágamelo saber si algo es incorrecto.

-2voto

Timothée Jeannin Puntos 151

La expectativa de una integral It (y una integral Wiener) es siempre cero.

Finanhelp.com

FinanHelp es una comunidad para personas con conocimientos de economía y finanzas, o quiere aprender. Puedes hacer tus propias preguntas o resolver las de los demás.

Powered by:

X