Usted está preguntando acerca de la estructura a plazo de la lognormal volatilidades implícitas para el Europeo de swaptions, que es una función de dos dimensiones (caducidad y tenor).
Primera fecha de vencimiento: normalmente (pero no siempre), las volatilidades implícitas son el aumento en el grupo de 0 a 6 meses de sector, porque el futuro inmediato, es a menudo más previsible que en el mediano plazo. En algún punto, las volatilidades máximo y siempre comenzará a disminuir durante mucho tiempo con fecha de swaptions. Una de las hipótesis de este efecto es que las tasas de interés son fundamentalmente limitada (que muy rara vez por debajo de 0 o por encima del 15%, por ejemplo), por lo que el anual implícita vol de larga fecha swaptions tiene a disminuir aproximadamente en un 1/sqrt(vencimiento).
Tenor: empíricamente, uno encuentra que la mayoría de la volatilidad de las tasas a lo largo del tiempo son aquellos en los 2yr-5yr sector de la curva. El extremo largo (30yrs y arriba) tiende a ser menos volátil. Presumiblemente porque la nueva información afecta a largo plazo el avance tasas de menos de cortos de fecha forward de tasas de interés, pero eso es una hipótesis.
También hay un modelo de efecto en la lognormal volatilidades. Cuando las tasas de obtener muy bajos (como es ahora el caso en el extremo frontal de muchas curvas de rendimiento), el comportamiento real de los tipos forward tiende a ser más volátil que la lognormal modelo podría predecir. Por lo tanto implícita lognormal volatilidades son bastante altos para muy corto expitation, corto tenor opciones