Dado el espacio de prueba $(\Omega, \mathscr{F}, P)$ y un proceso Wiener $(W_t)_{t \geq 0}$ definir la filtración $\mathscr{F}_t = \sigma(W_u : u \leq t)$
Sea 0 < p < q < r. Determine $E[W_p W_q W_r]$ .
Mi intento:
$0 = E[(W_r-W_q)(W_q-W_p)(W_p)]$
$\to E[W_p W_q W_r] = E[W_r W_p^2 + W_pW_q^2 + W_qW_p^2]$
$\to E[W_p W_q W_r] = E[(W_r+W_q) W_p^2 + W_pW_q^2]$
$\to E[W_p W_q W_r] = E[E[(W_r+W_q) W_p^2 + W_pW_q^2]|\mathscr{F_p}]$
$\to E[W_p W_q W_r] = E[W_p^2E[(W_r+W_q)|\mathscr{F_p}] + E[W_pE[(W_q^2)|\mathscr{F_p}]]$
$\to E[W_p W_q W_r] = ...0$ ?
Parece que las cosas son $\mathscr{F_p}$ -¿Medible? $E[(W_r+W_q)]=0=E[W_p]$
No lo sé. ¿Ayuda, por favor? :(