4 votos

Deficiencias generalizadas de movimiento Browniano para la modelización de los precios de los activos

Simplemente estoy interesado en la audiencia de algunos puntos de vista en el que las deficiencias se originan por el uso de la (multidimensional) SDE $$dS(t)=S(t)\alpha(t,S(t))dt+S(t)\sigma(t,S(t))dW(t)$$

como un modelo para los precios de los activos.

Sé que esto es de hecho bastante general, pero a menudo me he encontrado con esto en mis estudios y lo más probable es que los chicos tienen mucho más acerca de esto de lo que puedo imaginar a mí mismo.

1voto

Peter Puntos 11

No sé lo que usted quiere oír, pero tengo varios puntos:

  • El principal impulsor de la incertidumbre es un proceso de Wiener, que se remonta a la discreta modelo binomial para los precios de las acciones. En realidad, el estocástico principal fuente podría ser algo completamente diferente.
  • $\alpha$ y Vola $\sigma$ son dependiendo directamente de su stockprice. ¿Por qué deberían? el que fácilmente podría depender de su Wiener-Proceso como en el CIR o Vasicec modelo.
  • La Deriva $\alpha$ y Vola $\sigma$ una función tanto de $S_t$ y por lo tanto no hay impactos exógenos pueden ser modelados. Considere la posibilidad de: $\alpha$ y $\sigma$ son adaptada en su Wiener-Filtración procedente de $W$. Este filtrado en tiempo $t$, puede ser interpretado como toda la información que usted vio en el stockprices hasta ese punto. En realidad la Vola o la Deriva de cambio debido a las cosas que suceden no dependiendo del mercado de valores. Creo que de pequeño al azar disturbends genereted por las noticias que en la política o las catástrofes. Para esto se Stochstic Volatilty modelos necesarios.

Finanhelp.com

FinanHelp es una comunidad para personas con conocimientos de economía y finanzas, o quiere aprender. Puedes hacer tus propias preguntas o resolver las de los demás.

Powered by:

X