4 votos

Óptima De Carteras

En la teoría moderna de carteras, un famoso problema es el Markowitz media de la varianza de la cartera óptima, definida por la resolución de

$$\underset{\mathbf{w}}{\mbox{min}\,\,}\mathbf{w}^{T}\boldsymbol{\Sigma}\mathbf{w}$$

sujeto a $\mathbf{w}^{T}\mathbf{1}=1$ y $\mathbf{w}^{T}\boldsymbol{\mu}=\eta$.

Otro ejemplo que he visto en las clases teóricas es el Mínimo de la Varianza de la Cartera que es el mismo que el anterior, excepto que la condición $\mathbf{w}^{T}\boldsymbol{\mu}=\eta$ se cae.

Me preguntaba, sin duda hay un montón de otras similares tipo de problemas de optimización similares a estos. Por ejemplo,

  • la imposición de cada entrada de $\mathbf{w}$ es >0 -- para evitar un corto de los bombardeos
  • la imposición de cada entrada de $\mathbf{w}$ es < $\alpha$ para evitar poner demasiado peso en una stock

Mi pregunta es la siguiente: hay una cómoda lista de estos tipos de problemas de optimización, y sus soluciones?

7voto

alex Puntos 131

Como profesional, he trabajado en los siguientes

  • Maximizar el Rendimiento de la OEA para una Cartera de Renta Fija, manteniendo las Tasas de Duración (Clave Tasa de Duración) y la Propagación de duración en un limitado la gama . Existen otras limitaciones, tales como

    1. No las ventas en corto
    2. La cantidad máxima que usted puede comprar un X% de Max importe pendiente de pago en el mercado
    3. La máxima exposición a un particular país , emisor, Sector , divisas, etc es limitado
    4. Máxima de rotación de la cartera se encuentra dentro de un cierto límite.
    5. Los Costos de transacción (que se Define como función de DV01 Bid-Offer Spread) está dentro de un rango
  • En lugar de la función objetivo ser el Rendimiento/OEA o cualquier otro medida de la rentabilidad también podemos tratar de minimizar funciones tales como RWA(Activos Ponderados por Riesgo) , Basilea 3 Capital requerido etc. Estos problemas similares conjunto de restricciones como la anterior.

  • Estoy intentando resolver un dinámico ejercicio de optimización donde habría re-equilibrio de carga basado en un entorno simulado de las tasas de interés , la inflación , fx, etc.

La mayoría de estos no son puramente Markowitch tipo y me terminan usando Lineal / programación Cuadrática basado en el caso de uso.

Espero que esto les ayude de alguna manera.

1voto

Amir Puntos 3237

Un tipo de problema en tu cesta de la compra: $$ \max_w \left(w^T \mu-q \cdot w^T \Sigma w\ \ derecho) $$ donde $p\geq 0$ es una aversión al riesgo parámetro. En el caso de que $q\to\infty$, que son extremadamente reacios a asumir riesgos, y minimizar la varianza sin preocuparse de la media. Si $p =0 $ que son neutrales al riesgo, y usted sólo está interesado en la maximización de la media. Usted puede poner todas las posibles restricciones lineales en la parte superior: $Aw \leq b$, $A 'w = b'$ etc. y todos ellos caen dentro de la clase de problemas de optimización cuadrática, que están muy bien estudiados en matemáticas, en particular, la mayoría de ellos no han agradable analítica fórmulas para $w$, pero se puede calcular numéricamente bastante rápido.

Finanhelp.com

FinanHelp es una comunidad para personas con conocimientos de economía y finanzas, o quiere aprender. Puedes hacer tus propias preguntas o resolver las de los demás.

Powered by:

X