Estoy teniendo problemas con el Ho-Lee modelo para las tasas de corto y diferenciar entre cómo encontrar los valores para el parámetro libre λ comparación con el de usar el modelo para predecir los precios en el futuro.
El Ho-Lee modelo para cada paso en un árbol binomial: $$ \lambda_tdt + \sigma \sqrt dt $$
He leído que para establecer el parámetro en cada paso en una recombinación de árbol binomial, se establece la tasa en el estado 0 al actual tipo de cambio spot (es decir: 1 mes tipo de cambio spot) y encontrar un valor de lambda que cuando se enchufa en el modelo tendrá como resultado el actual tipo de cambio spot para el siguiente paso de tiempo (por ejemplo: a partir del 1 de mes de tipo de cambio spot en el estado 0 y el uso de un 1 mes de tiempo de paso, el valor correcto para lambda cuando se enchufa en el modelo va a producir la corriente de 2 meses el tipo de cambio spot, etc).
Esto me confunde. Una vez que hayas determinado el valor de lambda para cada paso en mi árbol, lo que las entradas de cambio a utilizar el modelo con mi binomio árbol para predecir los futuros de las tasas .. es decir: a un mes de la tasa en un mes, en dos meses, etc?
En caso de que mi descripción no está claro, aquí es una excepción de Bruce Tuckman del libro sobre el tema.
... encontrar λ1 tal que el modelo produce un plazo de dos meses contado igual a que en el mercado. A continuación, encontrar λ2 tal que el modelo produce un tres meses tipo de cambio spot igual que en el mercado. De seguir en esta la moda hasta que el árbol termina.