6 votos

Un recursiva de la función de producción

He estado leyendo un libro sobre un Kaleckian economía de la modelo, pero no es una función recursiva que me molesta. ¿Alguien puede darnos una idea de por qué la ecuación por qué diseñado como este?

Cita del libro:

$ $ Y = \min\{aE, reino unido\} \quad (1.1)$

La ecuación (1.1) denota la fija coeficientes de la función de producción, donde $u$ denota salida; $E$, empleo; $K$, stock de capital; $a = Y/E$, la productividad del trabajo; y $u = Y/K$, la salida, el ratio de capital. En el siguiente análisis, suponemos que el capital, la producción potencial de relación es la unidad. A partir de esto, podemos considerar la salida-el ratio de capital $u = Y/K$ como la tasa de utilización de capacidad.$^{4)}$ ...

$4)$ La tasa de utilización de capacidad $u$ es definida como $u = Y/Y^*$, donde $$ Y denota la salida real y $Y^*$ denota el potencial de salida. La tasa de utilización de capacidad se descompone en $u = (Y/K)(K/Y^*)$, donde $K/Y^*$ denota la capital/producto potencial de la relación y de captura de la tecnología de producción. Si suponemos que $K/Y^*$ es constante, entonces $u$ y $Y/K$ cambios en la misma dirección. A partir de esto, podemos considerar la salida del ratio de capital como la tasa de utilización de capacidad. En este capítulo, por simplicidad, suponemos que $K/Y^* = 1$. Por lo tanto, obtenemos $u = Y/K.$

Asumo $a$ y $u$ son los coeficientes fijos. Pero incluso si suponemos $ru < aE $ entonces, $u = Y/K$, debemos tener $ru = aE$ o es malo? Si es correcto, ¿por qué usamos el uso de los mínimos de operación?

Aquí está el libro digital. Cita de la página 20.

2voto

jt. Puntos 146

El min de operación que se conoce como un Leontief función de producción http://en.wikipedia.org/wiki/Leontief_production_function

Tienes razón que con Leontief las funciones de producción, el equilibrio es siempre aE=reino unido, es decir, que la producción es lineal, y los factores que se consumen en proporción fija. Hay algunos ejemplos del mundo real para esto: a la unidad, por ejemplo, se necesita un coche y las ruedas en una exacta 1:4 proporción, y tener 6 ruedas por el coche no te deja de producir algo más de 4 llantas por vehículo. Pero para la mayor parte, el objetivo es sólo para motivar una aproximación lineal a un sistema de multi-sector de la economía, que fácilmente se puede conectar a la computadora y ejecutar el conjunto de la economía cálculos. No teníamos alta potencia de los ordenadores en aquellos días (c. 1950), por lo que la computación multi-sector no-lineal de las tecnologías de producción estaba simplemente fuera de la cuestión.

Finanhelp.com

FinanHelp es una comunidad para personas con conocimientos de economía y finanzas, o quiere aprender. Puedes hacer tus propias preguntas o resolver las de los demás.

Powered by:

X