Los siguientes fragmentos generarán rutas de puntos y vol de QuantLib HestonProcess
y generar los gráficos mostrados.
Obsérvese que en el histograma de vol, vemos un pico que aparece en el cubo 0 - debido a que Feller no está bien satisfecho, estamos viendo muchos vols aterrizando en 0 y permaneciendo durante mucho tiempo
Fragmento para generar las rutas:
import QuantLib as ql
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Utility function to pull out spot and vol paths as Pandas dataframes
def generate_multi_paths_df(sequence, num_paths):
spot_paths = []
vol_paths = []
for i in range(num_paths):
sample_path = seq.next()
values = sample_path.value()
spot, vol = values
spot_paths.append([x for x in spot])
vol_paths.append([x for x in vol])
df_spot = pd.DataFrame(spot_paths, columns=[spot.time(x) for x in range(len(spot))])
df_vol = pd.DataFrame(vol_paths, columns=[spot.time(x) for x in range(len(spot))])
return df_spot, df_vol
today = ql.Date(1, 7, 2020)
v0 = 0.01; kappa = 1.0; theta = 0.04; rho = -0.3; sigma = 0.4; spot = 100; rate = 0.0
# Set up the flat risk-free curves
riskFreeCurve = ql.FlatForward(today, rate, ql.Actual365Fixed())
flat_ts = ql.YieldTermStructureHandle(riskFreeCurve)
dividend_ts = ql.YieldTermStructureHandle(riskFreeCurve)
heston_process = ql.HestonProcess(flat_ts, dividend_ts, ql.QuoteHandle(ql.SimpleQuote(spot)), v0, kappa, theta, sigma, rho)
timestep = 8
length = 2
times = ql.TimeGrid(length, timestep)
dimension = heston_process.factors()
rng = ql.GaussianRandomSequenceGenerator(ql.UniformRandomSequenceGenerator(dimension * timestep, ql.UniformRandomGenerator()))
seq = ql.GaussianMultiPathGenerator(heston_process, list(times), rng, False)
df_spot, df_vol = generate_multi_paths_df(seq, 10000)
df_spot.head()
Fragmento para generar los gráficos:
# Plot the first ten paths for spot and vol, and the distribution of the final path step across all paths
plt.figure(figsize=(20, 10))
plt.subplot(2, 2, 1)
plt.plot(df_spot.iloc[0:10].transpose())
plt.title("Sample Spot Paths")
plt.subplot(2, 2, 2)
plt.hist(df_spot[2.0], bins=np.linspace(0, 250, 51))
plt.title("Spot, t=2Y")
plt.subplot(2, 2, 3)
plt.plot(np.sqrt(df_vol.iloc[0:10]).transpose())
plt.title("Sample Vol Paths")
plt.subplot(2, 2, 4)
plt.hist(np.sqrt(df_vol[2.0]), bins=np.linspace(0, 0.8, 17))
plt.title("Instantaneous Vol, t=2Y")