Tengo notas que dicen que podemos hacer los siguientes cálculos. Estoy un poco confundido sobre algunos de los cálculos que se hacen. ¿Qué supuestos necesitaría para obtener los siguientes resultados? ¿O hay errores? En concreto, me confunde la ecuación (1) que aparece a continuación. En particular, me resulta extraña porque si dejo que $\rho = -1$ entonces la ecuación (1) da a veces una varianza negativa. (Tal vez el cálculo sea indefinido cuando $\rho = -1$ ?)
Dejemos que $r_{t,t+n} = \sum_{i=1}^n r_{t+i}$ . Supongamos que $r_t$ es un proceso AR(1) (digamos que con errores dados por una distribución Normal de media cero con varianza $\sigma^2$ ) donde $$ \text{Cov}(r_t,r_{t+j}) = \rho^j \sigma^2 $$ y por lo tanto $$ \text{Corr}(r_t, r_{t+j}) = \rho^j. $$
Las notas que tengo dicen que $\text{Var}(r_{t,t+2}) = 2(1 + \rho) \sigma^2$ y que $$ \text{Var}(r_{t,t+n}) = \left( n + 2 \sum_{i=1}^{n-1} \rho^i (n-i) \right) \sigma^2. \tag{1} $$
(Por cierto, esta pregunta se refiere a los rendimientos acumulados (logarítmicos)).