Suponemos que, bajo la medida de probabilidad$Q$, \begin{align*}
dS_t &= S_t\big(r_t dt + \sigma dW_s(t)\big),\\
dr_t &= -k\, r_t dt + \alpha dW_r(t),\tag{1}
\end {align *} donde$d\langle W_s(t), W_r(t)\rangle_t = \rho dt$. Desde$(1)$, para$s\ge t$, \begin{align*}
r_s = e^{-k(s-t)}r_t + \alpha\int_t^s e^{-k(s-u)} dW_r(u).
\end {align *} Luego, para$T\ge t$, \begin{align*}
\int_t^T r_s ds &=\frac{r_t}{k}\left(1-e^{-k(T-t)} \right)+\alpha \int_t^T\!\!\!\int_t^s e^{-k(s-u)} dW_r(u) ds\\
&=\frac{r_t}{k}\left(1-e^{-k(T-t)} \right)+\alpha \int_t^T\!\!\!\int_u^T e^{-k(s-u)} ds dW_r(u) \\
&=\frac{r_t}{k}\left(1-e^{-k(T-t)} \right)+\alpha \int_t^T\frac{1}{k}\left(1-e^{-k(T-u)} \right) dW_r(u)\\
&=r_t\beta(t, T)+\alpha \int_t^T \beta(u, T) dW_r(u),
\end {align *} donde$$\beta(t, T)=\frac{1}{k}\left(1-e^{-k(T-t)} \right).$ $ Por lo tanto, \begin{align*}
E^Q\left(\frac{1}{B_T} \mid \mathcal{F}_t\right) &=\frac{1}{B_t}E^Q\left(e^{-\int_t^T r_s ds} \mid \mathcal{F}_t \right)\\
&=\frac{1}{B_t} e^{-r_t\beta(t, T) + \frac{\alpha^2}{2} \int_t^T \beta^2(u, T) du}.
\end {align*} Además, \begin{align*}
E^Q\left(S_T \mid \mathcal{F}_t\right) &= S_t E^Q\left(e^{\int_t^T r_s ds - \frac{\sigma^2}{2} (T-t) + \sigma \int_t^T dW_s(u)} \right)\\
&=S_t E^Q\left(e^{r_t\beta(t, T)+\alpha \int_t^T \beta(u, T) dW_r(u) - \frac{\sigma^2}{2} (T-t) + \sigma \int_t^T dW_s(u)} \right)\\
&=S_te^{r_t\beta(t, T)+ \frac{\alpha^2}{2} \int_t^T \beta^2(u, T) du +\alpha \sigma \rho \int_t^T\beta(u, T) du}.
\end {align*} En consecuencia, \begin{align*}
C(t, T) &= \frac{Fut}{Fwd}\\
&=\frac{E^Q\left(S_T \mid \mathcal{F}_t\right)}{E\left(\frac{S_T}{B_T} \mid \mathcal{F}_t\right)/E^Q\left(\frac{1}{B_T} \mid \mathcal{F}_t\right)}\\
&=\frac{S_te^{r_t\beta(t, T)+ \frac{\alpha^2}{2} \int_t^T \beta^2(u, T) du +\alpha \sigma \rho \int_t^T\beta(u, T) du}}{\frac{S_t}{B_t} B_t e^{r_t\beta(t, T) - \frac{\alpha^2}{2} \int_t^T \beta^2(u, T) du}}\\
&=e^{\alpha^2\int_t^T \beta^2(u, T) du +\alpha \sigma \rho \int_t^T\beta(u, T) du}.
\end {align*}
No olvide el 1/2 en la función característica de la variable normal.