Tasa de interés Nominal i
3% compuesto semestralmente
Usando la fórmula para la tasa efectiva anual aquí,
La tasa efectiva r = (1 + i/2)^2 - 1 = 0.030225 = 3.0225%
Tasa mensual m = (1 + 0.030225)^(1/12) - 1 = 0.0024845
La directora p
es $100,000
Using the example for an ordinary annuity from here: Calculating The Present And Future Value Of Annuities
The example demonstrates how a present value principal of $4329.48 está pagada por cinco cuotas de $1000 each discounted to present value by the interest rate and period.
The example shows
p = Σ d (1 + m)^-k
for k = 1 to n
where d
is the periodic deposit and n
is the number of periods.
By induction this can be converted to a formula
p = (d - d (1 + m)^-n)/m
∴ d = (m (1 + m)^n p)/((1 + m)^n - 1)
∴ d = (0.0024845 (1 + 0.0024845)^36 * 100000)/((1 + 0.0024845)^36 - 1) = 2907.30
The monthly deposit is $2907.30
Verificación
(d - d (1 + m)^-n)/m = p
(2907.30 - 2907.30 (1 + 0.0024845)^-36)/0.0024845 = 100000
Tras el Pago Nº 1 el interés acumulado sobre el capital es
100000 * 0.0024845 = 248.45
por lo que el saldo restante después de que el primer pago es
100000 + 248.45 - 2907.30 = $97,341.15