Usted dice que el actual saldo es de 295.000 dólares. Digamos que llevas 2 meses. Resolviendo el tipo de interés
with
s = principal
d = payment
n = number of months
s = 295000
d = 2400
n = 30*12 - 2 = 358
s = (d - d (1 + r)^-n)/r
r = 0.00759326
effective annual rate = (1 + r)^12 - 1 = 9.50225 %
Si siguieras así durante 4 meses más el saldo sería de
x = 4
balance = (d + (1 + r)^x (r s - d))/r = 294352.72
Comprobación del saldo final si se continúa durante los 358 meses
x = 358
balance = (d + (1 + r)^x (r s - d))/r = 0
El saldo final es cero, como es preceptivo.
Así que si después de 4 meses que pagó en nada
s = 294352.72
n = 30*12 - 6 = 354
r = 0.00759326
d = r (1 + 1/((1 + r)^n - 1)) s = 2400
El pago se mantiene en 2.400 dólares, como estaba previsto.
Si después de 4 meses ingresas 100.000
s = 294352.72 - 100000 = 194352.72
n = 30*12 - 6 = 354
r = 0.00759326
d = r (1 + 1/((1 + r)^n - 1)) s = 1584.65
El pago se reduce a 1584,65
Deberías poder aplicar estos cálculos de ejemplo a tu situación.
Con cifras revisadas
- Importe original del préstamo $295.200,00
- Plazo 360
- Tipo de interés 4,75% (nominal, compuesto mensualmente)
- El pago mensual es de 2.380 dólares exactamente
Las cifras anteriores no son coherentes. Por ejemplo, calculando el plazo del préstamo.
s = 295200
r = 0.0475/12
d = 2380
n = -(Log[1 - (r s)/d]/Log[1 + r]) = 170.925
Si estás pagando 2.380 $ al mes, el préstamo debería devolverse en 171 meses.
Consulte
http://www.planabettermortgage.com.au/loan-calculators/how-long-to-repay.htm
0 votos
Su pago mensual original debe ser sólo $ 1539.90. Prueba a comprobarlo aquí: financialmentor.com/calculator/
0 votos
Es decir
(0.0475/12)*(1 + 1/((1 + 0.0475/12)^360 - 1))*295200 = 1539.90
2 votos
@ChrisDegnen la cifra de $2,380 probablemente incluye el impuesto a la propiedad y el seguro