Considere dos países: Hogar y Extranjeras que producen dos bienes, los coches y el trigo. Las tecnologías de producción son tales que:
$q_{c} = K_{c}^{0.5} L_{c}^{0.5}$ y $q_{w} = 0.5 K_{w}^{0.5}L_{w}^{0.5}$ para el Hogar. Y para el Extranjero:
$q_{c}^{*} = 0.5 K_{c}^{0.5*} L_{c}^{0.5*}$ y $q_{w} = K_{w}^{0.5*}L_{w}^{0.5*}$
$K_{c}$ indica la cantidad de capital utilizado en la producción de automóviles.
El asterisco indica el país Extranjero. Las dotaciones son:
$K_{c} + K_{w} = K_{c}^{*} + K_{w}^* = 1$ y $L_{c} + L_{w} = L_{c}^{*} + L_{w}^* = 1$
Las preferencias son homothetic e idénticos entre los países y teniendo en cuenta por $\frac{D{c}}{D_{w}} = \frac{p_{w}}{p_{c}}$.
Así que ambos países tienen el mismo dotaciones, pero sus tecnologías de producción diferentes.
La primera cuestión es encontrar la autarquía de las cantidades y los precios relativos. Esto lo he conseguido hacerlo mediante la configuración de la maximización de utilidades problema en cada sector, para luego encontrar el salario-alquiler de relación. Y viendo como la Cobb-Douglas exponentes son el mismo, sé que cantidades iguales de capital y trabajo que será utilizado en la producción de cada bien. No voy a incluir el álgebra, pero aquí están mis salarios y tarifas de alquiler de cada sector. Para los coches:
$w = 0.5 p_{c} (\frac{K_{c}}{L_{c}})^{0.5}$ $\quad$ (1)
$r = 0.5 p_{c} (\frac{L_{c}}{K_{c}})^{0.5}$ $\quad$ (2)
$w^* = 0.25 p_{c}^{*} (\frac{K_{c}^*}{L_{c}^*})^{0.5}$ $\quad$(3)
$r^* = 0.25 p_{c} (\frac{L_{c}^*}{K_{c}^*})^{0.5}$ $\quad$ (4)
Y para el trigo sector:
$w = 0.25 p_{w} (\frac{K_{w}}{L_{w}})^{0.5}$ $\quad$ (5)
$r = 0.25 p_{w} (\frac{L_{w}}{K_{w}})^{0.5}$ $\quad$ (6)
$w^* = 0.5 p_{w}^{*} (\frac{K_{w}^*}{L_{w}^*})^{0.5}$ $\quad$(7)
$r^* = 0.5 p_{w} (\frac{L_{w}^*}{K_{w}^*})^{0.5}$ $\quad$ (8)
De la autarquía caso, dividiendo (1) al (3) y la configuración de $K_{c} = L_{c}$ se muestra que, para el Hogar, el precio relativo, $\frac{p_{c}}{p_{w}} = 0.5$. Del mismo modo para los Extranjeros, $\frac{p_{c}^*}{p_{w}^*} = 2$. Y el uso de la preferencia de la función puedo encontrar las cantidades de cada bien producido.
Es encontrar el libre comercio de los precios relativos y cantidades que me está provocando algunos problemas. Sé que en el libre comercio y factor de los precios de la producción de igualar y que la demanda mundial es igual a la producción mundial. También sé que la Casa tiene una ventaja comparativa en los coches y Extranjeros en el trigo (dada la autarquía de los precios relativos). Pero me han intentado durante horas, ahora para manipular (1)-(8), pero sin mucho éxito. Cualquier sugerencia en cuanto a cómo puedo proceder?