1 votos

Sobre el supuesto de maximización de beneficios: Cuando falla, ¿lo hace con elegancia?

Esta pregunta se inspiró en un comentario sobre otra pregunta:

Un análisis básico de costes y beneficios entre dos escenarios

Mi pregunta es: ¿Es la maximización de los beneficios generalmente una buena suposición para analizar el comportamiento de una empresa? Por ejemplo, si estoy analizando un modelo económico, ¿es seguro asumir la maximización del beneficio? ¿Cuándo no es un buen supuesto?

El principal objetivo de la pregunta es, me gustaría saber lo siguiente:

¿Es como la física, en la que la maximización del beneficio es un fenómeno de primer orden que puede ir acompañado de fenómenos de orden superior? Si es así, podría descartar con seguridad los efectos de orden superior y no preocuparme de que mi modelo sea completamente mal.

¿O es que cuando los efectos de orden superior están presentes, el modelo en sí mismo se comporta como un conjunto diferente de peces?

1voto

Matthias Benkard Puntos 11264

En muchos problemas, suponer que las empresas maximizan sus beneficios (es decir, que maximizan su función de beneficios) es una buena suposición inicial. Sin embargo, falla cuando hay problemas de agencia y las asimetrías de información son demasiado elevadas (y en algunos otros casos también). Dicho esto, en la mayoría de los problemas ese sería el primer supuesto con el que intentaría modelar antes de intentar otra cosa. Para usar una analogía física, lo compararía con la física newtoniana y relativista, en la que la física newtoniana es defectuosa, pero en muchos casos da predicciones razonablemente precisas (excepto probablemente la maximización de los beneficios, ya que la teoría social no es tan precisa como la física newtoniana).

En primer lugar, las empresas no pueden realmente maximizar los beneficios en el sentido de tomar su función de beneficios $\Pi = PQ -C(Q)$ toman la derivada de primer orden para obtener FOCs y encuentran $Q^*$ . No conozco ninguna empresa que lo haga y si alguien conoce un ejemplo me gustaría verlo.

La maximización de los beneficios es una metáfora de una presión "evolutiva" para la maximización de los beneficios. Las empresas que no tienden a maximizar sus beneficios no suelen sobrevivir. Es similar a la biología evolutiva, que a menudo utiliza la teoría de los juegos y asume que, por ejemplo, las palomas maximizan racionalmente la ingesta de calorías y la posibilidad de transmitir los genes, lo que, por supuesto, no es literalmente cierto (dudo que las palomas tengan facultades mentales para el cálculo), sino que el modelo es una metáfora que ofrece buenas predicciones del comportamiento animal.

Esto se debe a que la metodología económica moderna está muy influenciada por el instrumentalismo. El instrumentalismo es la idea epistemológica de que no importa si la teoría es literalmente cierta mientras dé predicciones precisas (por ejemplo, véase Friedman 1953 ).

Sin embargo, este modelo no siempre será preciso. Una de las razones más comunes que encontrará en los libros de texto son los problemas de agencia.

Muchas empresas no están dirigidas por sus propietarios (directores), sino por agentes (gestores). Los accionistas no suelen tener la misma visión de la empresa que el director general. Por tanto, existe una asimetría informativa entre lo que sabe el director general y lo que sabe el mandante.

Como resultado, esta asimetría informativa puede ser explotada de forma que el gestor maximice su utilidad frente al beneficio. Por ejemplo, el directivo podría preferir dejar un legado de construcción de una gran empresa, por lo que podría empujar a la empresa a expandirse más allá de lo que maximiza el beneficio (es decir, ver construcción del imperio ).

Además, porque la función de beneficios es casi imposible de observar (las empresas no pueden medir fácilmente todos sus costes, ni siquiera mencionar la derivación de toda la función de costes). En consecuencia, pueden optar por maximizar los ingresos por ventas en lugar de los beneficios, o pueden maximizar los ingresos por ventas con la restricción de los beneficios (por ejemplo, véase la imagen siguiente de este fuente ).

Como puede ver, la maximización de las ventas con restricción de beneficios no siempre está tan lejos de la maximización de los beneficios, por lo que en algunos casos el uso de este modelo no da predicciones significativamente diferentes, pero ciertamente puede hacerlo.

enter image description here

Más arriba he dado dos alternativas comunes a la pura maximización del beneficio. Por supuesto, hay más alternativas.

Volviendo a su pregunta principal:

Mi pregunta es: ¿es la maximización de los beneficios generalmente un buen supuesto para analizar el comportamiento de una empresa?

Como se ha argumentado anteriormente, esto depende del contexto. La maximización de los beneficios es ciertamente una buena primera hipótesis cuando se explora el tema. Es un supuesto muy común que todavía se utiliza en muchos artículos teóricos publicados en las mejores revistas, como la revista AEA Microeconomics field.

Sin embargo, como se ha argumentado anteriormente, no es una suposición inocua. Hay situaciones en las que suponer la maximización de los beneficios no dará lugar a predicciones correctas y otras situaciones en las que será muy inexacta. No es posible enumerar todas las posibles contingencias en las que esto puede ocurrir, pero las razones mencionadas anteriormente son, en mi opinión, las más comunes.

Lo ideal es explorar la literatura anterior sobre un tema que le interese y ver si hay argumentos a favor del uso de teorías alternativas. Si estás construyendo algún modelo en el que no estás seguro de ello, no dudaría en utilizar la maximización de beneficios como primer supuesto, pero lo ideal sería comparar las predicciones de dicho modelo con las observaciones del mundo real y, si fallan, probar si otra teoría funcionaría mejor.

Finanhelp.com

FinanHelp es una comunidad para personas con conocimientos de economía y finanzas, o quiere aprender. Puedes hacer tus propias preguntas o resolver las de los demás.

Powered by:

X